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ABSTRACT

Using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-
40) for 1958 to 2001, adjusted for bias over the southern oceans prior to 1979, an analysis is made of global
patterns of monthly mean anomalies of atmospheric mass, which is approximately conserved globally. It
differs from previous analyses of atmospheric circulation by effectively area weighting surface or sea level
pressure that diminishes the role of high latitudes. To examine whether global patterns of behavior exist
requires analysis of all seasons together (as opposite seasons occur in each hemisphere). Empirical or-
thogonal function (EOF) analysis, R-mode varimax-rotated EOF analysis, and cyclostationary EOF
(CSEOF) analysis tools are used to explore patterns and variability on interannual and longer time scales.
Clarification is given of varimax terminology and procedures that have been previously misinterpreted. The
dominant global monthly variability overall is associated with the Southern Hemisphere annular mode
(SAM), which is active in all months of the year. However, it is not very coherent from month to month and
exhibits a great deal of natural unforced variability. The third most important pattern is the Northern
Hemisphere annular mode (NAM) and associated North Atlantic Oscillation (NAO), which is the equiva-
lent Northern Hemisphere expression. Neither of these is really a global mode, although they covary on
long time scales in association with tropical or external forcing. For monthly data, the second mode is
coherent with Niño-3.4 sea surface temperatures and thus corresponds to El Niño–Southern Oscillation
(ENSO), which is truly global in extent. It exhibits more coherent evolution with time and projects strongest
onto the interannual variability, where it stands out by far as the dominant mode in the CSEOF analysis.
The CSEOF analysis extracts the patterns phase locked with annual cycle and reveals their evolution
throughout the year. Standard EOF and varimax analyses are not able to evolve with time of year unless
the analysis is stratified by season. Varimax analysis is able to extract the SAM, NAM, and ENSO modes
very well, however.

1. Introduction

The global mass of the atmosphere is approximately
conserved. More precisely, the global mass of dry air
changes slowly in conjunction with changes in compo-
sition of the atmosphere. Overall, Trenberth and Smith
(2005) estimate that the global dry air mass is constant
to within 0.01-hPa-equivalent global surface pressure.
Trenberth and Smith (2005) further examined several
global reanalyses to see how well the global dry air
mass constraint is met and derived new values for the

total mass of the atmosphere based upon the 40-yr Eu-
ropean Centre for Medium Range Weather Forecasts
(ECMWF) Re-Analysis (ERA-40). They documented
the annual cycle of total mass and water vapor and
found that the dry air mass is constant in the ERA-40
reanalyses to within a standard deviation of 0.065 hPa
for monthly mean fields after 1979. Prior to 1979, and
especially prior to 1973 when satellite data are not
available, the constraint is not close to being met and
problems are identified, especially over the southern
oceans.

Many previous analyses exist of sea level pressure
fields using techniques such as empirical orthogonal
functions (EOFs) and correlation analysis to determine
teleconnection patterns. For instance, EOF analysis of
Northern Hemisphere (NH) sea level pressures north
of 20°N for 1925–77 by Trenberth and Paolino (1981)
found that the dominant pattern in all seasons is what is
now called the Northern Hemisphere annular mode
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(NAM). Moreover, they related it to the North Atlantic
Oscillation (NAO). More generally, results from all of
the previous analyses vary somewhat and depend on
details of how the analysis was carried out, such as the
domain used, what grid was used, and whether values
were weighted in some way (e.g., Barnston and Livezey
1987). Most commonly, gridded latitude–longitude
analyses have been used and a cos� weighting has been
applied to the computed variances and covariances to
take account of the convergence of meridians with lati-
tude, effectively area weighting the covariances. In
these cases, the quantity analyzed has indeed been the
sea level pressure, which has the advantage that it is not
sensitive to modest changes in elevation of the mea-
surement (i.e., station moves). The disadvantages are
that sea level pressure effectively adds a temperature-
dependent artificial mass of atmosphere to replace the
topography and is not area weighted and, hence, is less
directly related to the true mass distribution.

Therefore, analyzing the surface pressure appears to
have major benefits relative to sea level pressure by
eliminating the necessity of extrapolating below ground
over land. Several estimates of the global mean surface
pressure, ps, differ because of topography changes in
the models used in the analyses (Trenberth and Smith
2005). Also, as direct use of ps values includes large
gradients near mountains, it is desirable to use depar-
tures from the long-term monthly means for analysis of
atmospheric variations.

Further, there is considerable merit in analyzing a
quantity that has a global constraint of being conserved,
namely mass. Mass is proportional to surface pressure
(Trenberth and Smith 2005) but incorporates area
weighting. Hence, relative to sea level or surface pres-
sure, an analysis of mass effectively weights each value
by cos�, or the variance by cos2�, and thus it diminishes
the influence of the high latitudes on results. Only for
mass is high pressure in one region fully compensated
for by low pressure elsewhere. A good example is the
occurrence of major blocking episodes in which there is
a buildup of high pressure over a region, but the com-
pensating low pressure may occur in the other hemi-
sphere (e.g., Trenberth 1986; Carrera and Gyakum
2003). This argument also suggests that the domain
should be global and hence there is no reason to favor
a particular season: winter in one hemisphere accom-
panies summer in the other.

The goal of this study is to perform an analysis of
atmospheric mass in a systematic way and determine
whether the dominant patterns that emerge relate to
well-established modes or patterns of atmospheric vari-
ability such as El Niño–Southern Oscillation (ENSO),
the NAO, and so on. We begin with a conventional

EOF analysis of appropriately area-weighted monthly
anomalies of ps. Hence, water vapor contributions are
included, although their contribution to the variability
is quite small (Trenberth and Smith 2005). The period
analyzed is 1958 to 2001 from ERA-40, with an adjust-
ment made over the southern oceans to homogenize
the anomalies somewhat. Nevertheless, this is a finite
period and because EOF analysis attempts to account
for the maximum variance explained, modes of behav-
ior that otherwise might be sifted out with a much
longer dataset are apt to become intermingled with one
another. Accordingly, we also perform a varimax rota-
tion of the EOFs (VEOF analysis) to simplify the struc-
ture.

Even though long-term monthly means are removed,
the variance is still not stationary as it contains a dis-
tinctive annual cycle, especially locally. Variability is
much greater in the winter hemisphere. Accordingly,
the statistics have a distinctive annual cycle that should
be recognized in the analysis; rather than simply ana-
lyze the seasons separately, we employ a cyclostation-
ary EOF (CSEOF) analysis (Kim and North 1997). This
provides a rather different perspective on interannual
variability, and perhaps one that may be of value in
other applications.

Section 2 describes the dataset, the modifications
made to it, and the methods of analysis, including clari-
fication of terminology in use in atmospheric sciences.
Section 3 presents the results of conventional EOF
analyses, varimax EOF analyses, and CSEOF analysis,
and further discusses the results in the context of pat-
terns of known modes of behavior of the atmosphere.
Section 4 presents the conclusions.

2. Datasets and methods

a. Data

The main data employed in this analysis are surface
pressure analyses from ERA-40, most often truncated
to T63 resolution on a Gaussian grid with resolution of
1.875°, or T42 (2.8°). The analysis is of monthly anoma-
lies; however, to reduce noise associated with synoptic
weather systems crossing from one region to another at
the beginning and end of months, the main analysis is of
anomalies smoothed with a 1⁄4(1–2–1) binomial filter
that removes two-month fluctuations and hence cuts
the number of independent values in half. Figure 1
shows the percentage variance retained in this process
and highlights the exceptionally noisy nature of
monthly means in the extratropics. In the Tropics some
of this noise is from fluctuations with about monthly
time scales, such as the Madden–Julian oscillation, but
elsewhere most of this is indeed weather noise.
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An evaluation of these data (Trenberth and Smith
2005), in the context of the conservation of mass of the
atmosphere, found spurious trends in both the mass of
dry air and atmospheric moisture arising from changes
in the observing system, especially prior to 1979 when
reliable satellite data became available for global analy-
ses. Spurious fluctuations in global mean surface pres-
sure of order 0.6 hPa occur before 1979 and primarily
arise from low-quality analyses over the southern
oceans. Surface pressures are generally higher around
Antarctica and contribute to global mean values of or-
der 0.3 hPa higher before 1973 in ERA-40. Locally,
around Antarctica, errors were shown to be of order 5
hPa. The Vertical Temperature Profile Radiometer
(VTPR) data, available from 1973 to 1978, improve

both the mean state and cut down on spurious variabil-
ity, but are not as good as the post-1979 data in this
regard. It also leads to water vapor column values that
are too high in the subtropics. Water vapor mean an-
nual cycle variations are found to contribute to global
mean surface pressure variations of 0.3 hPa. In general,
water vapor contributions to total mass anomalies are
much smaller and can be neglected for current pur-
poses. Spurious trends in sea level pressure from analy-
ses, especially the National Centers for Environmental
Prediction–National Center for Atmospheric Research
(NCEP�NCAR) reanalyses have also been identified
by Marshall (2003).

However, the spurious variations in mass prior to
1979 are regarded as a potential problem for exploring
variability because they artificially inflate the variance,
unless corrected. Accordingly, based on the mean er-
rors documented in Trenberth and Smith (2005), some
adjustments were made to the surface pressure
anomaly time series in a region bounded by 56°S and
the Antarctic coast. In this region for post-1979, and
other regions as well, the mean annual cycle from 1979
to 2001 is used to determine the monthly anomalies. A
core region from 56°S to within 2.25° latitude of the
coast was established with a mask where full adjust-
ments are made, whereby the anomalies prior to 1979
were computed relative to the mean for 1958–78. For
two grid points immediately north and south of the core
region, a merge is devised such that the weights are
two-thirds and one-third, with the two-thirds weight
closest to the core (inner) region. Some minor smooth-
ing to the mask was made in the vicinity of the Antarc-
tic Peninsula. Accordingly, decadal variability across
1978–79 is suppressed in this region. (The adjusted sur-
face pressure anomalies are available from NCAR at
http://www.cgd.ucar.edu/cas/catalog/ecmwf/era40.)

b. EOF analysis

The first analysis is a standard EOF analysis (see
Richman 1986 for a review) of monthly anomalies of
mass, where the units are kilograms. In our terminol-
ogy, EOFs are eigenfunctions of the covariance matrix.
The loading vectors depict normalized EOF spatial pat-
terns that are then converted into more familiar equiva-
lent surface pressure patterns. Along with each pattern
is a principal component (PC) time series and an eigen-
value that can be normalized by the total variance to
provide the fraction of variance accounted for by each
EOF. Usually the EOFs are ordered by the amount of
variance accounted for. This kind of analysis results in
orthogonal patterns and time series (at zero lag) and
hence is a very efficient representation of the variance.
The results may produce patterns that are physical

FIG. 1. For the surface pressure monthly anomalies on a T42
grid for 1958–2001, shown are (middle) the unfiltered monthly
variance, units 104 hPa2; (top) the 1–2–1-smoothed variance; and
(bottom) the percent variance retained.
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modes of the climate system, but in general this is un-
likely. Results typically depend on the variable being
analyzed, the domain used, whether the data are nor-
malized (so that the eigen analysis is of the correlation
rather than covariance matrix), time scales and filter-
ing, and so on. Disadvantages discussed by Richman
(1986) are not necessarily accepted by Jolliffe (1987). In
particular, as the method attempts to account for the
most variance, it tends to result in EOF patterns that
are global in extent. For instance, Rossby wave tele-
connections are known to result from certain kinds of
disturbances but may be somewhat local and confined
to one hemisphere. But EOFs will populate the domain
with patterns that happen to be correlated for this par-
ticular sample; yet, unless there is a physical relation-
ship, the apparent links will change as data are added,
and the results will not be robust.

c. Varimax EOF analysis

Accordingly, we decided to also perform a varimax
rotation, a now widely used algorithm whose character-
istics and rationale are described by Horel (1981). It is
claimed to be more robust to temporal and spatial do-
mains (Richman 1986), but results depend a great deal
on the number of eigenvectors chosen for rotation. Ro-
tation conserves the total variance of the eigenvectors
selected for rotation but redistributes it at the expense
that successive maximization of variance is lost (Jolliffe
1987). Performing a rotation with varimax retains or-
thogonality of either the spatial patterns or the time
series, but not both. It also imposes a “simple structure”
to the fields that tends to localize the main centers of
action and maximize the regions of small weightings.

To be more specific and clarify the terminology, in
EOF analysis, time series of a spatial array of gridded
data P(r, t) are represented in terms of EOF loading
vectors V(r) and their principal component time series
T(t), where r is the vector depicting the spatial dimen-
sion

P�r, t� � �
i

Vi�r�Ti�t�, �1�

so that V depicts the spatial patterns of the EOF and is
an eigenvector of the analysis. The index i represents
the number of EOFs, each associated with an eigen-
value �i. Commonly, only a few of the EOFs are re-
tained for further analysis.

There is a symmetry in the separation of variables in
space and time in (1) whereby we can readily switch
time for space, or vice versa. In factor analysis (e.g.,
Davis 1986), the focus tends to be on either one or the
other. In Q-mode factor analysis, attention is centered

on the interpretation of the time variations (or in more
general statistical terminology “inter-object relation-
ships”). In this case with varimax, the orthogonality is
retained in the principal component time series but not
the patterns. The alternative is to focus on the spatial
patterns, called R-mode factor analysis, where the “in-
ter-variable relationships” are explored. In this case for
varimax, the resulting spatial patterns are orthogonal
but the time series are not.

In atmospheric sciences, it has frequently been
claimed that the orthogonality in space is artificial and
hence that constraint should be relaxed but that or-
thogonality in time is important. For instance the ro-
tated principal component analysis (RPCA) of Horel
(1981), Lanzante (1984), and Barnston and Livezey
(1987) make this claim and seem to suggest that they
are performing a Q-mode varimax analysis; yet closer
examination eventually makes clear that they were, in
fact, performing an R-mode analysis. A consequence is
that there is widespread confusion over terminology
and use of varimax in meteorology. Because the time
series are correlated in R-mode varimax, the temporal
variance locally is not uniquely partitioned among the
patterns. However, it turns out that it is uniquely par-
titioned when summed over the entire spatial grid ow-
ing to the orthogonality of the patterns! Accordingly, it
is still possible to uniquely assign the fraction of vari-
ance accounted for to VEOFs in spite of lack of or-
thogonality of the time series. However, this does have
other consequences. In the commonly used R-mode va-
rimax analysis, the operation of developing the simple
structure is performed on the spatial patterns and,
given the new VEOF patterns, the associated time se-
ries is computed by projecting the patterns onto the
original data. However, if the resulting time series are
then projected back onto the data to compute, for in-
stance, a spatial correlation pattern, then the result has
no direct relationship with the VEOF pattern because
of the cross-correlation among time series. In contrast
for standard EOFs, the correlation pattern can be de-
rived directly from the EOF pattern and the zero lines
remain fixed. Hence, there are at least two spatial struc-
tures associated with each VEOF. We will use the R-
mode varimax analysis and illustrate some of these
points.

d. Cyclostationary EOF analysis

Some of the potential problems with EOF analysis
related to dependence on domain are removed through
use of global data. However, the seasonal dependence
of variability in each hemisphere demands recognition
of the annual cycle of variance, even if the mean annual
cycle is removed. This can be accomplished with cyclo-
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stationary EOFs (Kim and North 1997). This technique
assumes a periodic temporal evolution with a period, in
our case, of the annual cycle. With some reasonable
approximations Kim and North (1997) derive a compu-
tationally efficient way using Bloch functions to pro-
duce these CSEOFs. Several key characteristics are im-
portant for understanding the results. For monthly time
series, the CSEOF procedure results in periodic loading
vectors and hence one for each month of the year.
These are the “nested” fluctuations with periods less
than a year (intraannual in Kim and North’s parlance).
An EOF computation is performed with CSEOFs ob-
tained as eigenfunctions of the cyclic covariance func-
tion resulting in the Bloch functions (EOF patterns)
that are cyclic but which evolve with interannual varia-
tions (the outer modes of Kim and North), given by the
principal component time series. Usually only the first
few CSEOFs are of interest. The time series will include
any harmonics of the annual cycle but, otherwise, the
periods are longer than the nested period. An example
application is given in Kim and Chung (2001).

In CSEOF analysis, a similar representation to that
in standard EOF analysis (see above) is used:

P�r, t� � �
i

Vi�r, t�Ti�t� , �2�

except that now the spatial patterns also have a cyclic
time dependence such that V(r, t) � V(r, t � d), where
d is the period, in our case, of the annual cycle (�12
months). Note that V(r, t) and T(t) are orthogonal.

We have experimented with the CSEOF technique
on several datasets and worked closely with K.-Y. Kim,
who kindly provided the initial software for producing
these computations. Subsequently, we have modified
the software to conform to the FORTRAN 90/95 stan-
dard as much as possible, invoked public domain alter-
natives for certain proprietary dependencies, and writ-
ten a generalized interface. The interface, software, and
documentation are available online (see http://
www.cgd.ucar.edu/cas/software/list.html). Our experi-
ence leads us to note that the qualitative and quantita-
tive characteristics of the ends of the output PC time
series (say the first and last year of monthly mean data
for example) depend on the temporal length of the in-
put time series. This cannot be emphasized enough.
The reason is that a localized window (approximately, a
Morlet mother wavelet function implemented to render
a localized Fourier transform within the “nested pe-
riod”) is applied to the data (K.-Y. Kim 2002, personal
communication). At the end points of the input time
series, only half of the window is being applied, no
matter how one selects or preconditions the end por-
tions of the data. Hence we find that it is best to ignore

a segment of length equal to the nested period at the
beginning and end of the output PC time series.

Usually, the CSEOF analysis is applied to data with
the annual mean removed but, where the annual cycle
is retained, it allows the analysis to pick out the mean
annual cycle as the first, and usually by far dominant,
mode. Then the time series depicts interannual fluctua-
tions in amplitude of the mean annual cycle. Higher
modes are then apt to be modes of variability that are
phase locked to the annual cycle, such as ENSO, which
has its maximum fluctuations in sea surface tempera-
ture (SST) in December (Trenberth et al. 1998). We
have performed such an analysis that includes the an-
nual cycle, and the first mode essentially reproduces the
monthly mean departures from the annual mean. We
will therefore focus on the CSEOF analysis of the
anomaly time series after removing the mean annual
cycle in the conventional way by subtracting the
monthly means, but this still retains the annual cycle in
variance.

The results of our analyses produce spatial structure
maps of mass anomalies, which are not familiar to most
of us, and therefore we translate these into equivalent
surface pressure maps by dividing by the Gaussian
weight (proportional to the area) and renormalizing.
We also present some correlation maps and, alterna-
tively, could regress the PC time series on surface pres-
sure.

e. Circulation indices

We can then relate the patterns and time series to
known modes or identified patterns of variability
through both the correlation of the time series and
through the spatial patterns. Barnston and Livezey
(1987) provide a thorough overview of many of these
modes and circulation indices. In particular, we com-
pare these patterns and time series with ENSO indices
of the Southern Oscillation index (SOI) (Trenberth
1984; see http://www.cgd.ucar.edu/cas/catalog/climind/
soi.html) and Niño-3.4 SST (Trenberth and Stepaniak
2001; see http://www.cgd.ucar.edu/cas/catalog/climind/
TNI_N34/index.html#Sec5) and the North Pacific index
(NPI) of Trenberth and Hurrell (1994; see http://www.
cgd.ucar.edu/	jhurrell/np.html#monthly), which is also
an index of the Pacific decadal oscillation (PDO). See
especially the discussion by Newman et al. (2003) and
the NAO index (Hurrell 1995; http://www.cgd.ucar.edu/
	jhurrell/nao.stat.other.html#monthly), NAM, and
the Southern Hemisphere annular mode (SAM) of
Thompson and Wallace (2000): NAM � AO (Arctic
Oscillation) from NOAA’s Climate Prediction Center
(CPC; see http://www.cpc.ncep.noaa.gov/products/
precip/CWlink/daily_ao_index/ao_index.html); SAM �
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AAO (Antarctic Oscillation) from CPC (see http://
www.cpc.ncep.noaa.gov/products/precip/CWlink/
daily_ao_index/aao/aao_index.html or more com-
pletely, http://www.jisao.washington.edu/data/aao/slp/).

3. Results

Although we have performed several experimental
analyses with the raw monthly mass anomalies, it is
apparent that they involve considerable noise arising
from incompletely sampled weather systems that is
considerably reduced by application of the 1–2–1
smoother. A map of the monthly mean variance of sur-
face pressure at T42 resolution is given (Fig. 1) along
with the result for the filtered data and the percentage
variance retained. Over 70% of the variance is retained
in much of the Tropics and subtropics except over the
Indian Ocean where intraseasonal (Madden–Julian) os-
cillations on order of monthly periods are reduced in
influence. In the extratropics, only roughly half the
monthly variance is retained. Summed over the entire
globe, the monthly mean mass variance is accounted for
by the annual cycle (51.4%) and 48.6% by the monthly
anomalies, of which 47.7% (or 23.1% of the total) is
retained by the 1–2–1 filter. To illustrate interannual
variability, we will also make use of an 11-point bino-
mial filter (Trenberth 1984) that removes fluctuations
less than 9 months but retains 24-month periods with
80% amplitude. For the mass field, such a filter retains

50% of the variance over about half of the Tropics
but only 10% to 20% of the anomaly variance in the
extratropics.

a. EOF analysis

A standard EOF analysis results in the same domi-
nant patterns through the first six EOFs for both
monthly and 1–2–1 smoothed results. Table 1 presents
the percentage variance explained by the first 10 EOFs,
and the first two EOFs and their time series are given in
Fig. 2. The first six EOFs account for 44.7% of the
variance. The estimated standard error of the eigenval-
ues (Table 1) suggests that the first four are distinct, the
next two may be mixed, and numbers 7 through 10 are

too close to be distinct from each other although they
are distinct from the previous pair.

Although the analysis is of the mass field, we present
the equivalent surface pressure fields, and only the first
two EOFs are shown, as they illustrate the need to
apply a rotation and simplify the structure. They are
related to several common indices of circulation. The
dominant pattern for EOF1 is that of the SAM (corre-
lation of monthly anomalies is 0.55 for 1958–2001), but
it also includes a clear El Niño signature throughout the
Pacific (correlation with the Niño-3.4 SST index of
–0.50). For EOF2 the correlations are with the NAO
(0.31) and NAM (0.51), but also with ENSO (0.43)
mixed in. These correlations vary with season; for ex-
ample, the correlation for EOF2 with NAM is 0.60 for
the northern winter half year, while it is higher (0.59)
with ENSO in the summer half year.

b. Varimax EOF analysis

Because the EOF paradigm accounts for the most
variance and thus selects patterns with global weight-
ings, they are not likely to be physical modes in any
sense, and thus we experimented with varimax rotation
of various numbers of EOFs. The lack of sufficient
separation of the eigenvalues means that it makes sense
to consider rotating only 2, 3, 4, 6, or 10 patterns, and
there is no convergence as higher numbers are in-
cluded. Instead, as more and more EOFs are included,
the patterns become more localized. We have chosen to
present results for rotation of the first four VEOFs to-
taling 34.6% of the variance (Fig. 3); see Table 1 for the
percentage variance accounted for by each. The asso-
ciated principal component monthly time series, along
with a low-pass filter applied to highlight interannual
variations, is given in Fig. 4.

As noted in section 2, the time series are not orthogo-
nal although, because the cross correlations are not
high, they can be treated as somewhat independent.
VEOF1 is correlated with VEOF2 at 0.19, VEOF3 at
0.16, and VEOF4 at 0.01; these are the highest values
except VEOF4 has maximum correlation with VEOF2
at 0.12. Hence the common variance is less than 4% in
all cases. The time series also exhibit varying degrees of

TABLE 1. Percentage variance (Var) explained by the first 10 EOFs for the 1–2–1 monthly mass anomalies. Also given is the
standard error (SE). The last row gives the percentage variance associated with four rotated varimax EOFs (VEOF).

EOF

1 2 3 4 5 6 7 8 9 10

Var 12.2 8.6 7.4 6.3 5.2 5.0 4.0 3.6 3.4 3.3
SE 0.75 0.53 0.45 0.39 0.32 0.31 0.24 0.22 0.21 0.20
VEOF 10.2 9.2 8.5 6.7
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autocorrelation. The lag-1 autocorrelations are all quite
high (Table 2), but at lag 4 months these all drop sub-
stantially except for VEOF2 (Table 2); it is not until 9
months that the autocorrelation for VEOF2 drops be-
low 0.2. Hence persistence and lower-frequency fluc-
tuations are mainly evident only in VEOF2, as can be
seen from the low-pass filter.

Because the analysis is based upon monthly anoma-
lies, it depends upon the distribution of variance
throughout the year. For these four VEOFs, most total
variance (3.25%) comes from January, closely followed
by February, July, December, June, and August. The
lowest is April (2.43%) and October and November are
also quite low (2.6%). This is especially evident in
VEOF1, while VEOF2 has maximum variance in the
southern winter, VEOF3 peaks in February and March,
and VEOF4 peaks in January, September, and Febru-
ary, with minima in April–May. Surprisingly, none of
these patterns are characterized simply as northern or
southern winter patterns.

Correlations of the VEOFs with established patterns
of variability from 1958 to 2001(Table 3) are based on

264 independent values for which the 5% two-tailed
significance level is 0.12. For 1979–2001, it is 0.17. Note
that there has been a substantial increase in VEOF1
correlation with SAM (0.68) compared with EOF1
(0.55) while it is no longer significantly related to El
Niño indices. In fact, the VEOFs can be readily iden-
tified primarily with one of the predominant known
modes of variability. VEOF1 is SAM, and VEOF 2 is
primarily El Niño (through either the SOI or Niño-3.4
index) and also relates to NPI, which is closely related
to the PDO. VEOF3 is primarily NAM, which is closely
related to NAO, and also has a link with NPI. VEOF4
is more closely identified with NPI.

When the correlations are computed over the shorter
interval from 1979 to 2001, the values are fairly stable
except for those with SAM, which is much higher at
0.83 for the shorter period. This no doubt relates to the
various sources of data for computing SAM, and in
particular, if the NCAR–NCEP reanalyses are used,
then there are large spurious trends in SAM, especially
in the winter (Marshall 2003). As we noted earlier, it
was necessary to correct the ERA-40 reanalyses in the

FIG. 2. The first two EOF patterns from the global mass analysis using 1–2–1-filtered monthly anomalies expressed as surface
pressures. Negative values are dashed. Also shown are the PC time series along with a low-pass (11 term) filter that reveals the
interannual variability.
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southern oceans region before we performed the cur-
rent analysis. Therefore it is expected that the true cor-
relation is probably greater than 80% and the VEOF1
time series is probably a more reliable depiction of
SAM variations. When the time series are filtered
(heavy curves in Fig. 4), correlations increase for

VEOF1 and SAM (0.71) and VEOF 3 with NAM (0.97)
and NAO (0.72), but while VEOF2 correlations in-
crease with SOI (0.90), they go down somewhat for
Niño-3.4.

The spatial patterns (Fig. 3) can also be interpreted
through correlations with the time series (Fig. 5) al-
though these are contaminated by the lack of orthogo-
nality (see section 2). At the right side of the VEOF
patterns (Fig. 3), the zonal integral profile is plotted,
which therefore relates to the meridional distribution of
mass associated with each pattern.

For VEOF1, Fig. 3 reveals the seesaw of mass across
about 50°S associated with the SAM. It therefore re-
veals the strong changes in the westerlies throughout

FIG. 3. The first four VEOF patterns for 1958–2001 monthly
mass anomalies, smoothed 1–2–1 and expressed as equivalent sur-
face pressure anomalies. Negative values are dashed. The contour
interval is 0.25, and contours are multiplied by 10. The zonal
integral is given at right to indicate mass redistribution.

FIG. 4. The PC time series of the first four VEOFs along with
the 11-term low-pass filter (heavy curve) for 1958–2001.

TABLE 2. Autocorrelations at lags in months for the varimax
EOFs.

VEOF

1 2 3 4

Lag 1 0.78 0.89 0.79 0.77
Lag 4 0.20 0.50 0.10 0.09
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