
The CESM
Automated

Test System
Unlocking the door to
more efficient, robust

CESM development

Bill Sacks,
Jay Shollenberger,

and other CSEG members

This talk will be posted at:
http://www2.cgd.ucar.edu/sections/cseg/tutorials

1Friday, March 14, 14

Welcome to the first of what we hope will become a long series of CSEG coffee talks. CSEG - the CESM software engineering
group - plans to lead one tutorial or discussion like this every few months. These will be aimed at all developers of CESM -
primarily the scientists who develop the model. We’ll assume you have some basic knowledge of CESM, such as how to create
and run a case. But we’ll try not to assume any advanced knowledge of CESM development. We really intend for these to be
accessible to people just getting started with CESM.

Please give us feedback on what you think about this, and especially what topics you would like us to cover.

Today’s talk will be on the CESM automated test system.

Although I’m presenting this, others - particularly Jay - get the credit for putting these tools together

Outline

• Intro & motivation

• Basics of using the automated test system

• Comparing against baselines

• Running a whole test suite

• Summary

• Appendix: References for later use

2Friday, March 14, 14

Outline

• Intro & motivation

• Basics of using the automated test system

• Comparing against baselines

• Running a whole test suite

• Summary

• Appendix: References for later use

3Friday, March 14, 14

Life Before Automated Testing

4Friday, March 14, 14

Image credits:
http://commons.wikimedia.org/wiki/File:Typing_computer_screen_reflection.jpg
http://en.wikipedia.org/wiki/Crossed_fingers
http://revaustinmiles.com/index.php/more/435

Life Before Automated Testing

4Friday, March 14, 14

Image credits:
http://commons.wikimedia.org/wiki/File:Typing_computer_screen_reflection.jpg
http://en.wikipedia.org/wiki/Crossed_fingers
http://revaustinmiles.com/index.php/more/435

Life Before Automated Testing

4Friday, March 14, 14

Image credits:
http://commons.wikimedia.org/wiki/File:Typing_computer_screen_reflection.jpg
http://en.wikipedia.org/wiki/Crossed_fingers
http://revaustinmiles.com/index.php/more/435

What Do We Want to Test?

• Runs to completion

• Restarts bit-for-bit

• Results independent of processor count

• Threading

• Compilation with debug flags, e.g., to pick up:

‣ array bounds problems

‣ floating point errors

• And other specialty tests

Functionality Tests

5Friday, March 14, 14

Independent of processor count: for SOME components.

Threading: important for performance

Rationale for some of this is reproducibility: If you want to redo a run, or compare an experiment vs control, you don’t want to
specify: “Okay, you need to run with exactly 1,245 processors, and restart the model every 2 years... except for the first 10 years
of the simulation, actually restart every year”

So this is a way of ensuring that you don’t have to specify all those details.

But also, these tests often pick up more fundamental bugs - e.g., processor count not bfb because there is a whole-array
assignment where there should be assignment just to one element of the array

What Do We Want to Test?

• Make sure other model configurations still work

‣ Example: Making sure CLM still works when you turn on
prognostic crops

• Make sure code works with other compilers

• If you expect a set of changes to maintain
identical answers, make sure that’s true

‣ Terminology: “Bit-for-bit”

“I didn’t break any other functionality”

6Friday, March 14, 14

This is important for your own science, too: Even though you may just be developing one little corner of the model, at the end of
the day, you’re still running the whole model, so you want to be sure that the other pieces of the model still work the same as
before.

All of this is a lot to remember. And that’s the motivation for the automated test suite: Then you don’t have to remember to test
all of these different things. In fact, you don’t even have to know what threading is. The automated test suite will test these
things for you and tell you if there is a problem.

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

Develop
~ 500 lines

Run
simulations

Present
results

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

Start writing
paper

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

Develop
~ 500 lines

Run
simulations

Present
results

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

SE
runs tests

Hand-off
to SE

Start writing
paper

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

Develop
~ 500 lines

Run
simulations

Present
results

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

SE
runs tests

Hand-off
to SE

Problems
discovered

Did I
really write
that code?

Hand-off
back to

you Start writing
paper

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

Develop
~ 500 lines

Run
simulations

Present
results

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

SE
runs tests

Hand-off
to SE

Problems
discovered

Did I
really write
that code?

Hand-off
back to

you

Fix
problems

Start writing
paper

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

Develop
~ 500 lines

Run
simulations

Present
results

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

SE
runs tests

Hand-off
to SE

Problems
discovered

Did I
really write
that code?

Hand-off
back to

you

Fix
problems

Re-

fixed

new
Start writing

paper

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

Run tests
yourself

Aha!
I see the
problem!

Fix
problem

Problems
discovered

Develop
~ 500 lines

Run
simulations

Present
results

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

SE
runs tests

Hand-off
to SE

Problems
discovered

Did I
really write
that code?

Hand-off
back to

you

Fix
problems

Re-

fixed

new

Develop
~ 100 lines

Start writing
paper

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

Run tests
yourself

Aha!
I see the
problem!

Fix
problem

Problems
discovered

Develop
~ 500 lines

Run
simulations

Present
results

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

SE
runs tests

Hand-off
to SE

Problems
discovered

Did I
really write
that code?

Hand-off
back to

you

Fix
problems

Re-

fixed

new

Develop
~ 100 lines

Start writing
paper

Next

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

Run tests
yourself

Aha!
I see the
problem!

Fix
problem

Problems
discovered

Develop
~ 500 lines

Run
simulations

Present
results

Isn’t Testing the Responsibility
of Software Engineers?

0

5

10

15

20

Constru
ctio

n

Sys
tem

 Tes
t

Post-R
ele

ase

Relative cost of defect removal

Stage at which defect is found

Steve McConnell (2004), Code Complete
2nd edition, p. 29

SE
runs tests

Hand-off
to SE

Problems
discovered

Did I
really write
that code?

Hand-off
back to

you

Fix
problems

Re-

fixed

new

Develop
~ 100 lines

Start writing
paper

Next

SE confirms
that tests

pass, brings
to trunk

Hand-off
to SE

7Friday, March 14, 14

Take-away from the graph: if you catch your own problems early, it will speed up bringing your code to the trunk

Right-hand flow chart: time frame ~ months (or years). Sources of inefficiency:
- forgetting what you have done
- Lots of changes -> hard to find the source of problems
- May need to redo experiments, etc.

Left-hand flow chart: time frame of cycle ~ days

What CESM’s Test System
Can Do for You

• Single tests that you run frequently while
developing

• Pre-built test lists that you run periodically, which
test various functionality across many
configurations

• Automated comparisons with baselines for non-
answer-changing modifications

8Friday, March 14, 14

Frequent single tests: ~ daily

Big test lists: maybe ~ weekly

What CESM’s Test System
Can NOT Do for You

• Is your code correct? This is the role of:

‣ Manual tests – some of which should later be added to
the automated test suite so nobody breaks YOUR code

‣ Unit tests – framework now in place in CESM

• Power diminished when you have answer-
changing modifications

‣ Try to break your development into multiple stages,
separating answer-changing from bit-for-bit changes

9Friday, March 14, 14

Answer-changing: OR: bring in your changes controlled by a flag in the model, and ensure that you truly just change answers
when that flag is turned on

Outline

• Intro & motivation

• Basics of using the automated test system

• Comparing against baselines

• Running a whole test suite

• Summary

• Appendix: References for later use

10Friday, March 14, 14

How to Run a Single Test

cd $CCSMROOT/scripts

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel

11Friday, March 14, 14

How to Run a Single Test

cd $CCSMROOT/scripts

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel

OPTIONAL: Unique ID for a given testname.
If not given, defaults to YYMMDD-HHMMSS

11Friday, March 14, 14

How to Run a Single Test

cd $CCSMROOT/scripts

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel

OPTIONAL: Unique ID for a given testname.
If not given, defaults to YYMMDD-HHMMSS

Test type
(ERS: exact restart)

11Friday, March 14, 14

How to Run a Single Test

cd $CCSMROOT/scripts

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel

OPTIONAL: Unique ID for a given testname.
If not given, defaults to YYMMDD-HHMMSS

Test type
(ERS: exact restart)

OPTIONAL: Extra test options
(_D: turn on debug flags)

(separate multiple options with _)

11Friday, March 14, 14

How to Run a Single Test

cd $CCSMROOT/scripts

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel

OPTIONAL: Unique ID for a given testname.
If not given, defaults to YYMMDD-HHMMSS

Test type
(ERS: exact restart)

OPTIONAL: Extra test options
(_D: turn on debug flags)

(separate multiple options with _)

Resolution Compset CompilerMachine

Examples here are for yellowstone,
but this works the same on any

supported machine.

11Friday, March 14, 14

How to Run a Single Test

cd $CCSMROOT/scripts

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel

OPTIONAL: Unique ID for a given testname.
If not given, defaults to YYMMDD-HHMMSS

cd ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01

./ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01.test_build

./ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01.submit

Test type
(ERS: exact restart)

OPTIONAL: Extra test options
(_D: turn on debug flags)

(separate multiple options with _)

Resolution Compset Compiler

Case name = testname.testid

Machine

Examples here are for yellowstone,
but this works the same on any

supported machine.

11Friday, March 14, 14

How to Run a Single Test

cd $CCSMROOT/scripts

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel

OPTIONAL: Unique ID for a given testname.
If not given, defaults to YYMMDD-HHMMSS

cd ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01

./ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01.test_build

./ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01.submit

Note use of test_build rather than standard build script.
This is important, because the test_build script sometimes does additional work.

Test type
(ERS: exact restart)

OPTIONAL: Extra test options
(_D: turn on debug flags)

(separate multiple options with _)

Resolution Compset Compiler

Case name = testname.testid

Machine

Examples here are for yellowstone,
but this works the same on any

supported machine.

11Friday, March 14, 14

Common Test Types

Functionality to Test Test Type

Runs to completion SMS
(smoke test)

Restarts bit-for-bit ERS
(exact restart test)

Hybrid / branch / restarts bit-for-bit ERI
(ERS on steroids; can be hard to debug)

Results independent of processor count PEM
(PE counts MPI bit-for-bit)

Threading PET
(with & without threading bit-for-bit)

Compilation with debug flags
(check array bounds, floating point trapping, etc.) Add _D option

Longer run
(default is typically 5 days)

Add _L option
(_Lm3 = 3 months, _Ly5 = 5 years, etc.)

For a complete list, run the following from $CCSMROOT/scripts:

ccsm_utils/Testlistxml/manage_xml_entries -list tests

12Friday, March 14, 14

Yellow = main test types you’ll want to run

Checking Test Results

cd $CCSMROOT/scripts/
ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01

cat TestStatus

13Friday, March 14, 14

Image credits:
http://openclipart.org/detail/30217/tango-face-smile-by-warszawianka
http://openclipart.org/detail/30223/tango-face-sad-by-warszawianka

Checking Test Results

cd $CCSMROOT/scripts/
ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01

cat TestStatus

PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01.memleak

13Friday, March 14, 14

Image credits:
http://openclipart.org/detail/30217/tango-face-smile-by-warszawianka
http://openclipart.org/detail/30223/tango-face-sad-by-warszawianka

Checking Test Results

cd $CCSMROOT/scripts/
ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01

cat TestStatus

PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01.memleak

FAIL ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01

Or you might see:

See TestStatus.out file for more details of the failure.
(See Appendix for ideas on where to look first for different failure types.)

13Friday, March 14, 14

Image credits:
http://openclipart.org/detail/30217/tango-face-smile-by-warszawianka
http://openclipart.org/detail/30223/tango-face-sad-by-warszawianka

Common Result Codes
Result Code Meaning

Good resultsGood results
PASS Test passed

Bad resultsBad results
TFAIL Test setup error

SFAIL Generation of test failed in scripts

CFAIL Build error

RUN Run timed out or exited abnormally

FAIL Test failed (either due to run failure or,
e.g., non-exact restarts for an ERS test)

Test not yet completeTest not yet complete
GEN Test has been generated

BUILD Build succeeded, not yet submitted

PEND Test submitted, waiting in queue

RUN Test is currently running

14Friday, March 14, 14

Common Result Codes
Result Code Meaning

Good resultsGood results
PASS Test passed

Bad resultsBad results
TFAIL Test setup error

SFAIL Generation of test failed in scripts

CFAIL Build error

RUN Run timed out or exited abnormally

FAIL Test failed (either due to run failure or,
e.g., non-exact restarts for an ERS test)

Test not yet completeTest not yet complete
GEN Test has been generated

BUILD Build succeeded, not yet submitted

PEND Test submitted, waiting in queue

RUN Test is currently running

Check queues or
log files to see if
“RUN” means

“still running” or
“run failed”

14Friday, March 14, 14

Sample TestStatus.out: ERS Failures
TestStatus = RUN
Initial run failed

doing a 11 ndays initial test
pass = 0
ERROR in /var/spool/torque/mom_priv/jobs/16682.goldbach.cgd.ucar.edu.SC:
coupler log indicates that inital model run failed

15Friday, March 14, 14

Sample TestStatus.out: ERS Failures
TestStatus = RUN
Initial run failed

doing a 11 ndays initial test
pass = 0
ERROR in /var/spool/torque/mom_priv/jobs/16682.goldbach.cgd.ucar.edu.SC:
coupler log indicates that inital model run failed

TestStatus = FAIL
Run succeeded, but restart wasn’t bit-for-bit

doing a 11 ndays initial test
pass = 1
doing a 5 ndays restart test
Initial Test log is /scratch/cluster/sacks/ERS_D.f10_f10.ICLM45BGC.goldbach_intel.t01/
run/cpl.log.140312-125941
Restart Test log is /scratch/cluster/sacks/ERS_D.f10_f10.ICLM45BGC.goldbach_intel.t01/
run/cpl.log.140312-130327
Initial Test hist is /scratch/cluster/sacks/ERS_D.f10_f10.ICLM45BGC.goldbach_intel.t01/
run/ERS_D.f10_f10.ICLM45BGC.goldbach_intel.t01.cpl.hi.0001-01-12-00000.nc.base
Restart Test hist is /scratch/cluster/sacks/ERS_D.f10_f10.ICLM45BGC.goldbach_intel.t01/
run/ERS_D.f10_f10.ICLM45BGC.goldbach_intel.t01.cpl.hi.0001-01-12-00000.nc
Comparing initial log file with second log file
Difference found beginning at 10107 1800 :
< comm_diag xxx sorr 1 2.1942676188259493750E+14 recv lnd Sl_avsdr
> comm_diag xxx sorr 1 2.1971003083939603125E+14 recv lnd Sl_avsdr
< comm_diag xxx sorr 2 2.1806167094445437500E+14 recv lnd Sl_anidr
...
FAIL

15Friday, March 14, 14

Making Arbitrary Configuration Changes to a Test

• What we have shown so far only allows you to
test out-of-the-box compsets

• There is also a capability to change any xml
variable or namelist option

‣ Done via a “testmods” directory, containing user_nl files
and/or a file of xmlchange commands

• Example:

• For details, see slides in Appendix

create_test -testname
ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.clm-ciso

Note extra component in the test name

16Friday, March 14, 14

Intention is: everything should be specified via the test name or the testmods directory - you should NOT need to make any
manual changes in your test’s case directory. This is to (1) facilitate rerunning a given test, and (2) comparing against baselines

Outline

• Intro & motivation

• Basics of using the automated test system

• Comparing against baselines

• Running a whole test suite

• Summary

• Appendix: References for later use

17Friday, March 14, 14

At this point, you may be thinking, “okay, great, I can do most of this myself, with create_newcase. Why do I need this test
system?” And to some extent you would be right. But I hope that, with the next two sections, you’ll see the advantage of using
automated tests.

Purpose of Baseline Comparisons

• No answers change, e.g., if you are doing an
answer-preserving code refactoring

• Some answers change, e.g., if you change CLM-
crop code, and want to make sure that answers
are still bit-for-bit for runs without crop

Make sure answers haven’t changed; this can mean:

18Friday, March 14, 14

Purpose of Baseline Comparisons

• Because we don’t have many testable specifications
of how CESM should work, baseline comparisons
are the strongest tool available to make sure you
haven’t broken anything

• To take full advantage of this tool, try to separate
your changes into:

‣ Bit-for-bit modifications that can be tested against
baselines

- e.g., renaming variables and moving code around, either before
or after your science changes

‣ Answer-changing modifications

- Try to make these as small as possible, so that they can be more
easily reviewed for correctness

19Friday, March 14, 14

Yes, this is more work, but it’s worth it to prevent the introduction of bugs

Baseline Comparisons
Step 1: Determine if you need to generate baselines

• Decide what to use as a baseline

‣ Generally a trunk version, or a previous, well-tested
version of your branch

• Determine if you need to generate baselines

‣ If comparing against a trunk version, baselines may exist
(e.g., on yellowstone, see $CESMDATAROOT/
ccsm_baselines for CESM & CLM baselines)

‣ Otherwise, you’ll need to generate your own baselines

20Friday, March 14, 14

Baseline Comparisons
Step 2: Generate baselines

• Check out the baseline code version

• Run create_test from the baseline code with the
-generate option:

mkdir /glade/p/work/$USER/cesm_baselines

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-generate clm4_5_59

(Skip this step if baselines already exist
for the desired baseline code version)

21Friday, March 14, 14

Baseline Comparisons
Step 2: Generate baselines

Confirming that baselines have been
successfully generated

cd $CCSMROOT/scripts/ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.G.t01

cat TestStatus

PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.G.t01
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.G.t01.memleak
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.G.t01.generate.clm4_5_59

22Friday, March 14, 14

Note G added to case name (‘generate’)

Baseline Comparisons
Step 2: Generate baselines

Confirming that baselines have been
successfully generated

cd $CCSMROOT/scripts/ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.G.t01

cat TestStatus

PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.G.t01
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.G.t01.memleak
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.G.t01.generate.clm4_5_59

ls /glade/p/work/$USER/cesm_baselines/clm4_5_59/
ERS_D.f10_f10.ICLM45BGC.yellowstone_intel

CaseDocs cpl.log.140312-153410 user_nl_clm user_nl_rtm
cpl.hi.nc cpl.log.140312-154007 user_nl_cpl
cpl.log TestStatus.out user_nl_datm

Comparisons will be done using this coupler history
file, which contains fields passed between components.
Note that individual component history files are NOT
compared, but you can add those comparisons using

the component_gen_comp tool (see Appendix).

22Friday, March 14, 14

Note G added to case name (‘generate’)

Baseline Comparisons
Step 3: Compare against baselines

• Run create_test from your modified code with
the -compare option (and -generate too, if
desired):

23Friday, March 14, 14

Baseline Comparisons
Step 3: Compare against baselines

• Run create_test from your modified code with
the -compare option (and -generate too, if
desired):

./create_test -testid t02
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59
-generate mynew_clm4_5_59

It doesn’t hurt to generate new baselines: it’s easier to
remove them than it is to generate baselines after the fact.
Just be sure to give your new baselines a meaningful name,
which differs from any existing baselines for this testname.

23Friday, March 14, 14

Interpreting Baseline Comparisons
Comparisons Pass

cd $CCSMROOT/scripts/ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.C.t02

cat TestStatus

PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.memleak
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.generate.mynew_clm4_5_59
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.compare_hist.clm4_5_59
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.memcomp.clm4_5_59
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.tputcomp.clm4_5_59
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.nlcomp

• compare_hist: Main comparison: FAIL means coupler history files differ

• memcomp: FAIL means memory use increased significantly

• tputcomp: FAIL means run time increased significantly

‣ Lots of false positives: You can generally ignore this

• nlcomp: FAIL means component namelists differ

24Friday, March 14, 14

Note GC added to case name (generate & compare)

Interpreting Baseline Comparisons
Comparisons Fail

cd $CCSMROOT/scripts/ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02

cat TestStatus

PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.memleak
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.generate.mynew_clm4_5_59
FAIL ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.compare_hist.clm4_5_59
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.memcomp.clm4_5_59
FAIL ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.tputcomp.clm4_5_59
COMMENT tput_decr = 9.791 tput_percent_decr = 17.3
FAIL ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.nlcomp

Comparing hist file with baseline hist file
...

SUMMARY of cprnc:
 A total number of 170 fields were compared
 of which 38 had non-zero differences
 and 0 had differences in fill patterns
 A total number of 0 fields could not be analyzed
 A total number of 0 fields on file 1 were not found on file2.
 diff_test: the two files seem to be DIFFERENT

FAIL
hist file comparison is FAIL

Excerpt from TestStatus.out:

For full differences, view cprnc.out in your case directory
(search for RMS in that file to see fields that differ)

25Friday, March 14, 14

Interpreting Baseline Comparisons
Missing baselines

cd $CCSMROOT/scripts/ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02

cat TestStatus

PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.memleak
PASS ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.generate.mynew_clm4_5_59
BFAIL ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t02.compare_hist.clm4_5_59

26Friday, March 14, 14

Outline

• Intro & motivation

• Basics of using the automated test system

• Comparing against baselines

• Running a whole test suite

• Summary

• Appendix: References for later use

27Friday, March 14, 14

Recap: What Do We Want to Test?

• Make sure other model configurations still work

‣ Example: Making sure CLM still works when you turn on
prognostic crops

• Make sure code works with other compilers

• If you expect a set of changes to maintain
identical answers, make sure that’s true

‣ Terminology: “Bit-for-bit”

“I didn’t break any other functionality”

28Friday, March 14, 14

All of this is a lot to remember. And that’s the motivation for the automated test suite: Then you don’t have to remember to test
all of these different things. In fact, you don’t even have to know what threading is. The automated test suite will test these
things for you and tell you if there is a problem.

Running a Test Suite

• Allows running many tests with a single
command

• Create your own test suite

‣ Simply a text file listing all the tests you want to run

‣ See Appendix for an example

• Run a pre-built test suite

‣ Allows you to test many configurations, including ones
you have never heard of!

29Friday, March 14, 14

Pre-Built Test Lists
ccsm_utils/Testlistxml/manage_xml_entries -list categories

Commonly-used categories:

• aux_clm: Used when making a CLM trunk tag

• aux_clm_short: Small subset of aux_clm, for more
frequent testing

• aux_glc: Used when making a GLC trunk tag

• prealpha: Used when making a CESM alpha tag

• prebeta: Used when making a CESM beta tag

30Friday, March 14, 14

Note that this does NOT cover the standard CAM testing (which uses its own test system), but you can do plenty of CAM testing
using this standard CESM test system

You should talk to a CSEG member for tips on an appropriate test list to run for your development

Viewing a Pre-Built Test List
ccsm_utils/Testlistxml/manage_xml_entries -query -outputlist

-category aux_clm -mach yellowstone -compiler intel

31Friday, March 14, 14

Viewing a Pre-Built Test List
ccsm_utils/Testlistxml/manage_xml_entries -query -outputlist

-category aux_clm -mach yellowstone -compiler intel

mach & compiler are optional
Exclude these options to see

all tests in this category

31Friday, March 14, 14

Viewing a Pre-Built Test List
ccsm_utils/Testlistxml/manage_xml_entries -query -outputlist

-category aux_clm -mach yellowstone -compiler intel

mach & compiler are optional
Exclude these options to see

all tests in this category

‣ SMS.f45_f45.I.yellowstone_intel.clm-ptsRLA

‣ SMS.f45_f45.I.yellowstone_intel.clm-ptsROA

‣ ERS_E.f19_g16.I1850.yellowstone_intel

‣ PET_P180x2_D.f19_g16.I1850CLM45.yellowstone_intel

‣ CME_Ly4.f10_f10.I1850CLM45BGC.yellowstone_intel.clm-monthly

‣ CME_N2.f10_f10.I1850CLM45BGC.yellowstone_intel.clm-default

‣ ERS.f19_g16.I1850CLM45BGC.yellowstone_intel.clm-default

‣ ERS_D_E.f19_g16.I1850CLM45BGC.yellowstone_intel.rtm-rtmOnIceOff

‣ ERS_E.f19_g16.I1850CRUCLM45CN.yellowstone_intel.clm-default

‣ SMS.1x1_mexicocityMEX.I1PTCLM45.yellowstone_intel.clm-default

‣ ERS_Lm3.1x1_vancouverCAN.I1PTCLM45.yellowstone_intel.clm-default

‣ SMS_D.1x1_mexicocityMEX.I1PTCLM50.yellowstone_intel.clm-default

‣ ERS_Lm3.1x1_vancouverCAN.I1PTCLM50.yellowstone_intel.clm-default

‣ SMS_Ly3.1x1_tropicAtl.I20TRCLM45BGC.yellowstone_intel.clm-
tropicAtl_subsetLate

‣ SMS_Ly5.1x1_tropicAtl.I20TRCLM45BGC.yellowstone_intel.clm-
tropicAtl_subsetMid

‣ SMS_Ly8.1x1_tropicAtl.I20TRCLM45BGC.yellowstone_intel.clm-
tropicAtl_subsetEarly

‣ ERI_D.f10_f10.I20TRCN.yellowstone_intel

‣ ERS_Ly5.f10_f10.I20TRCRUCLM45BGC.yellowstone_intel.clm-
monthly_noinitial

‣ ERI_D.T31_g37.ICLM45.yellowstone_intel.clm-SNICARFRC

‣ SMS_D_Mmpi-serial.f45_f45.ICLM45.yellowstone_intel.clm-ptsRLA

‣ SMS_Mmpi-serial.f45_f45.ICLM45.yellowstone_intel.clm-ptsRLA

‣ ERI.f09_g16.ICLM45BGC.yellowstone_intel

‣ ERI_D.f09_g16.ICLM45BGC.yellowstone_intel

‣ ERI.f10_f10.ICLM45BGC.yellowstone_intel

‣ ERI_D.f10_f10.ICLM45BGC.yellowstone_intel

‣ ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.clm-rootlit

‣ ERI.f19_g16.ICLM45BGC.yellowstone_intel

‣ ERI_D.f19_g16.ICLM45BGC.yellowstone_intel

‣ ERI_D.ne30_g16.ICLM45BGC.yellowstone_intel.clm-vrtlay

‣ ERI_D.ne30_g16.ICLM45BGC.yellowstone_intel

‣ ERS_Ly5.f10_f10.ICLM45BGCCROP.yellowstone_intel.clm-
irrigOn_reduceOutput

‣ PET_P15x2_Ly3.f10_f10.ICLM45BGCCROP.yellowstone_intel.clm-
irrigOn_reduceOutput

‣ SMS_Ly1.f19_g16.ICLM45BGCCROP.yellowstone_intel

‣ PET_P15x2_Lm25.f10_f10.ICLM45BGCDVCROP.yellowstone_intel.clm-
reduceOutput

‣ ERS_D.f19_g16.ICLM45GLCMEC.yellowstone_intel.clm-
glcMEC_changeFlags

‣ ERS_D.f09_g16.ICLM45VIC.yellowstone_intel.clm-vrtlay

‣ ERS_D.f10_f10.ICLM45VIC.yellowstone_intel.clm-vrtlay

‣ SMS.f19_g16.ICLM45VIC.yellowstone_intel.clm-default

‣ CME.f10_f10.ICN.yellowstone_intel

‣ ERS_Ld3_D_P64x16.ne30_g16.ICN.yellowstone_intel

‣ PET_D_P4x30.ne30_g16.ICN.yellowstone_intel

‣ ERS_Ld211_D_P112x1.f10_f10.ICNCROP.yellowstone_intel.clm-crop

‣ ERS_Ld211_P192x1.f19_g16.ICNDVCROP.yellowstone_intel.clm-crop

‣ NCK.f10_f10.ICRUCLM45.yellowstone_intel

‣ ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel

‣ ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel.clm-default

‣ ERI.f10_f10.ICRUCLM50BGC.yellowstone_intel

‣ ERI_D.f10_f10.ICRUCLM50BGC.yellowstone_intel

‣ ERI.f19_g16.ICRUCLM50BGC.yellowstone_intel

‣ ERI_D.f19_g16.ICRUCLM50BGC.yellowstone_intel

‣ ERS_Lm3.f19_g16.IGRCP60CN.yellowstone_intel

‣ SMS_Ld5.f19_g16.IRCP45CLM45BGC.yellowstone_intel.clm-decStart

31Friday, March 14, 14

Running a Pre-Built Test List
./create_test -testid t01
-xml_category aux_clm
-xml_mach yellowstone -xml_compiler intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59
-generate mynew_clm4_5_59

32Friday, March 14, 14

This is really cool. If you have started to drift off, now is the time to start paying attention again

Just like for single tests, you may need to run a separate test suite with ‘generate’ first to generate baselines

Need to run a separate command for each compiler: this may change soon

Running a Pre-Built Test List
./create_test -testid t01
-xml_category aux_clm
-xml_mach yellowstone -xml_compiler intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59
-generate mynew_clm4_5_59

• This one command creates all the tests on the
previous slide, then builds and submits them for you

32Friday, March 14, 14

This is really cool. If you have started to drift off, now is the time to start paying attention again

Just like for single tests, you may need to run a separate test suite with ‘generate’ first to generate baselines

Need to run a separate command for each compiler: this may change soon

Running a Pre-Built Test List
./create_test -testid t01
-xml_category aux_clm
-xml_mach yellowstone -xml_compiler intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59
-generate mynew_clm4_5_59

• This one command creates all the tests on the
previous slide, then builds and submits them for you!!!

32Friday, March 14, 14

This is really cool. If you have started to drift off, now is the time to start paying attention again

Just like for single tests, you may need to run a separate test suite with ‘generate’ first to generate baselines

Need to run a separate command for each compiler: this may change soon

Running a Pre-Built Test List
./create_test -testid t01
-xml_category aux_clm
-xml_mach yellowstone -xml_compiler intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59
-generate mynew_clm4_5_59

• This one command creates all the tests on the
previous slide, then builds and submits them for you

‣ This command can take a while to complete; see Appendix
for workflow hints

• Need to run a separate command for each compiler

‣ e.g., for aux_clm, run a second command for pgi on
yellowstone

!!!

32Friday, March 14, 14

This is really cool. If you have started to drift off, now is the time to start paying attention again

Just like for single tests, you may need to run a separate test suite with ‘generate’ first to generate baselines

Need to run a separate command for each compiler: this may change soon

Checking Results from a Test Suite
create_test creates a script named cs.status.$testid.$machine

Run this script to check test results for all tests in the test suite

./cs.status.t01.yellowstone

33Friday, March 14, 14

Checking Results from a Test Suite
create_test creates a script named cs.status.$testid.$machine

Run this script to check test results for all tests in the test suite

./cs.status.t01.yellowstone

PASS CME.f10_f10.ICN.yellowstone_intel.C.t01
PASS CME.f10_f10.ICN.yellowstone_intel.C.t01.generate.mynew_clm4_5_59
PASS CME.f10_f10.ICN.yellowstone_intel.C.t01.compare_hist.clm4_5_59
PASS CME.f10_f10.ICN.yellowstone_intel.C.t01.nlcomp
PASS CME_Ly4.f10_f10.I1850CLM45BGC.yellowstone_intel.clm-monthly.C.t01
PASS CME_Ly4.f10_f10.I1850CLM45BGC.yellowstone_intel.clm-monthly.C.t01.generate.mynew_clm4_5_59
PASS CME_Ly4.f10_f10.I1850CLM45BGC.yellowstone_intel.clm-monthly.C.t01.compare_hist.clm4_5_59
PASS CME_Ly4.f10_f10.I1850CLM45BGC.yellowstone_intel.clm-monthly.C.t01.nlcomp
...
FAIL ERI_D.ne30_g16.ICLM45BGC.yellowstone_intel.clm-vrtlay.C.t01
PASS ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel.C.t01
PASS ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel.C.t01.memleak
PASS ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel.C.t01.generate.mynew_clm4_5_59
PASS ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel.C.t01.compare_hist.clm4_5_59
PASS ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel.C.t01.memcomp.clm4_5_59
PASS ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel.C.t01.tputcomp.clm4_5_59
PASS ERI_N2.f19_g16.ICRUCLM45BGCCROP.yellowstone_intel.C.t01.nlcomp
...

Small excerpt:

33Friday, March 14, 14

Checking Results from a Test Suite

• Rerun the cs.status script as often as you want, to
view results as they come in

‣ At first you’ll see a lot of GEN results

• Investigating failures is the same as for single tests

‣ Go into relevant test directory, look at TestStatus.out, etc.

• Note that there may be some expected failures

‣ See if the failing test passed in the baseline code

‣ Or talk to the relevant CSEG member

34Friday, March 14, 14

Note that there may be some expected failures. e.g., for aux_clm, see https://wiki.ucar.edu/display/ccsm/CLM+Testing; for
aux_glc see the CISM ChangeLog; for prealpha and prebeta, see https://csegweb.cgd.ucar.edu/testdb/cgi-bin/login.cgi

So Running a Huge Test Suite
Is as Easy as 1-2-3

35Friday, March 14, 14

So Running a Huge Test Suite
Is as Easy as 1-2-3

1) ./create_test -testid t01 -xml_category aux_clm
-xml_mach yellowstone -xml_compiler intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59 -generate mynew_clm4_5_59

35Friday, March 14, 14

So Running a Huge Test Suite
Is as Easy as 1-2-3

1) ./create_test -testid t01 -xml_category aux_clm
-xml_mach yellowstone -xml_compiler intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59 -generate mynew_clm4_5_59

2) ./cs.status.t01.yellowstone

35Friday, March 14, 14

So Running a Huge Test Suite
Is as Easy as 1-2-3

1) ./create_test -testid t01 -xml_category aux_clm
-xml_mach yellowstone -xml_compiler intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59 -generate mynew_clm4_5_59

2) ./cs.status.t01.yellowstone

3) Celebrate all of your passing tests!

35Friday, March 14, 14

Outline

• Intro & motivation

• Basics of using the automated test system

• Comparing against baselines

• Running a whole test suite

• Summary

• Appendix: References for later use

36Friday, March 14, 14

Summary
• Automated testing lets you catch bugs sooner, speeding

development

• CESM’s automated test suite facilitates:

‣ Quick tests that you can run frequently

‣ Full test suites of lots of configurations that you can run periodically

• You now have the following testing tools at your disposal:

‣ Single tests

- Basic “smoke” tests

- Tests of requirements like exact restart

‣ Test suites that you create yourself (see Appendix)

‣ Pre-built test suites

‣ All of which allow comparisons to baselines, to make sure answers only
change when you expect them to change

37Friday, March 14, 14

Outline

• Intro & motivation

• Basics of using the automated test system

• Comparing against baselines

• Running a whole test suite

• Summary

• Appendix: References for later use

38Friday, March 14, 14

Contents of Appendix

• Where to go for more
information

• What CESM versions
does this cover?

• Full example: single test

• Where to look if your
test fails

• Full example: test suite

• Recommendation for
test suites: use ‘screen’

• Rerunning failed tests
in a test suite

• Running a test suite on
a different machine

• Details of using a
testmods directory

• Defining your own test
list

• Comparing component
history files with
component_gen_comp

39Friday, March 14, 14

Where to Go for More Information

• Slides & recording from this talk

‣ http://www2.cgd.ucar.edu/sections/cseg/tutorials

• Chapter 7 of the CESM User’s Guide

‣ http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/
book1.html

‣ Note that some of this is outdated – we no longer have query_tests
(replaced by manage_xml_entries)

• CLM’s guide to testing

‣ https://wiki.ucar.edu/display/ccsm/CLM+Testing

• Interactive help for tools discussed here

‣ create_test -help

‣ ccsm_utils/Testlistxml/manage_xml_entries -help

‣ ccsm_utils/Tools/component_gen_comp -help

40Friday, March 14, 14

What CESM Versions Does This Cover?

• In general, I refer to the latest development code

• Much of this is the same in the CESM1.2 release

• Single tests: Main functionality has been the same
for a while

• Test suites: Functionality has been in place for a
while, but command-line syntax changed
significantly in CESM1.2

‣ And the command to query a test list has changed even
more recently than that

• Note that examples are for yellowstone, but you
can use these tools on any machine

41Friday, March 14, 14
--- NOTES FOR THE READER ---

In the CESM1.2 release code, use $CESMROOT/scripts/query_tests in place of $CESMROOT/scripts/ccsm_utils/Testlistxml/manage_xml_entries

Note that the machine needs to have the cprnc tool installed, and the test scripts need to know where to find it (this is the case for CESM-supported machines)

Full Example: Single Test

cd $CCSMROOT/scripts

./create_test -testid t01
-testname ERS_D.f10_f10.ICLM45BGC.yellowstone_intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59
-generate mynew_clm4_5_59

cd ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t01

./ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t01.test_build

./ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.GC.t01.submit

cat TestStatus

No cesm_setup needed (create_test does that for you)

Wait for test to finish

If the test failed:
less TestStatus.out

cd /glade/scratch/$USER/ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.t01/run

less lnd.log.*
less cesm.log.*

42Friday, March 14, 14

Where to Look If Your Test Fails
Failure Code Where to Look First

TFAIL Output from create_test

SFAIL Output from create_test

CFAIL Output from test_build script (will generally point you to a build log file)

RUN

(1) Batch log files in case directory: determine if it simply ran out of wall-clock time

(2) TestStatus.out file in case directory

(3) Log files and core files in run directory

Note: Some tests (e.g., ERI) create multiple run directories, with .ref1, .ref2
extensions; you may need to check all of them, e.g., check:

ERI.f10_f10.ICLM45BGC.yellowstone_intel.t01.ref1/run

FAIL

(1) TestStatus.out file in case directory: this will help you see the cause of failure –
e.g., run didn’t complete vs. test requirements (such as exact restart) weren’t met.
Look for FAIL in this file, and any messages above the FAIL line.

(2) If run didn’t complete, check log files and core files in run directory

(3) If requirements of test weren’t met, TestStatus.out will generally refer to
differences in coupler log files and/or coupler history files. History file differences
can be seen in the cprnc.out file in the run directory.

43Friday, March 14, 14

Full Example: Test Suite
./create_test -testid t01.intel -xml_category aux_clm
-xml_mach yellowstone -xml_compiler intel
-baselineroot /glade/p/work/$USER/cesm_baselines
-compare clm4_5_59 -generate mynew_clm4_5_59 | tee t01.intel.out

“Pipe” (send) the output into the “tee” command.
tee is a unix command that copies all of the terminal output into the given file (t01.intel.out).

This allows easier viewing of the output later
– e.g., you can search this file for tests that had SFAIL or CFAIL results.

./cs.status.t01.intel.yellowstone | grep -v -e PASS -e tputcomp -e COMMENT

“Pipe” (send) the output into a “grep” command, which excludes all lines containing “PASS”, “tputcomp”, or “COMMENT”.
These lines can generally be ignored. Thus, what you’ll see are lines requiring your attention, such as FAIL results.

44Friday, March 14, 14

Recommendation for Test Suites:
Use the ‘screen’ command

• Motivation: Building and running tests is time-consuming, requires the
developer to keep a long-running terminal session open.

• What is screen?: Unix command that “virtualizes” a terminal session.
Sessions can be created, then detached and reattached from different
machines.

• screen -S ‘yellowstonetest’: Creates a session with the specified
name.

• screen -ls: Lists the currently open screen sessions.

• screen -d -r ‘yellowstonetest’: Attaches to screen session, detaching it
if already attached.

• Testing workflow:

‣ At work: For each machine, start a screen session either locally or on remote
machine.

‣ Check out code, start tests.

‣ Later, at home: Reattach to screen sessions, check on test status.

45Friday, March 14, 14

Rerunning Failed Tests in a Test Suite

• If lots of tests failed, generally easiest to rerun
the test suite from scratch

‣ Give it a new testid

• If just a few tests failed, due to system problems
or minor bugs

‣ Official recommendation is to re-create these failed
tests from scratch, as individual tests, or by creating your
own test suite

- This is the safest thing to do

‣ But often it will work to go into the case directories of
the failed tests, and rerun the test_build and submit
scripts

46Friday, March 14, 14

Running a Test Suite on a Different Machine
Example: You want to run all of the aux_clm tests that are

normally run on yellowstone with the pgi compiler, but you want
to run them on the machine ‘edison’ with the intel compiler

./create_test -testid t01.intel -xml_category aux_clm
-xml_mach yellowstone -xml_compiler pgi
-mach edison -compiler intel

xml_mach and xml_compiler say, “find the test list set up for this machine and compiler”.
By default, the machine and compiler used for the tests is the same.

But you can override that by specifying the -mach and/or -compiler options.

47Friday, March 14, 14

Details of Using a Testmods Directory

• Any namelist changes or xml variable changes can be made
using a testmods directory

• This directory contains either or both:

‣ user_nl files for any component(s)

- e.g., user_nl_clm, user_nl_cam

- Just like the user_nl files in a case, these can have any namelist changes

‣ A file called xmlchange_cmnds containing commands used to change xml
variables

- This can contain any number of lines with commands to run, such as: ./
xmlchange RUN_STARTDATE=2001-12-30

• By default, this directory should go in scripts/ccsm_utils/
Testlistxml/testmods_dirs

‣ See directories in there for examples

‣ The default location can be changed using the -user_testmods_dir option
to create_test

48Friday, March 14, 14

Details of Using a Testmods Directory

Use your testmods directory by specifying an extra
component in your testname:

create_test -testname
ERS_D.f10_f10.ICLM45BGC.yellowstone_intel.clm-ciso

This gives the path to the testmods directory.
The path is relative to scripts/ccsm_utils/Testlistxml/testmods_dirs,

unless the -user_testmods_dir option is given to create_test.
Note that subdirectories are separated by ‘-’

– i.e., use a dash in place of ‘/’ when separating directory components of the path.

49Friday, March 14, 14

Defining Your Own Test List

• You can easily run your own list of tests

• To do this, simply create a text file, with one test name per
line

‣ i.e., each line would be the ‘testname’ argument to create_test

• You can then run your whole test list similarly to how you
run pre-built test lists.

‣ But don’t use any of the -xml_* options to create_test
(xml_category, xml_mach, xml_compiler)

‣ Instead, use the -input_list option to create_test

- e.g., create_test -input_list my_test_list ...

- (where my_test_list is the text file you created)

• Note that a given test list should only use a single machine
& compiler

50Friday, March 14, 14

Comparing Component History Files
with component_gen_comp

• Recall that, when doing baseline comparisons, only coupler history files are compared

• Sometimes you want to compare component history files (e.g., CLM and/or CAM history files), to
make sure diagnostic fields haven’t changed

• This can be done with scripts/ccsm_utils/Tools/component_gen_comp

• Run this after your test suite has completed

• Need to specify the following options:

‣ -baselineroot, -generate, -compare: Same as the options to create_test

‣ -testid: testid of the test suite that you just ran, from which you want to generate or compare component history
files

‣ -model: name of component to generate / compare

- Currently just set up for clm (give it the model name clm2), cism and cpl

- Could easily be extended to other components

‣ -runloc: path to directory containing test run directories

• First you will need to run it with the -generate option to generate baselines, then you can run it
with the -compare option to compare against those baselines

• Note that this will only be effective if your tests generate component history files. This can be
done by running longer tests (e.g., > 1 month), or by using a testmods directory that specifies
more frequent history output.

• Note that BFAIL1 results from -compare can be ignored: these generally indicate that there simply
weren’t any component history files for this test

• Run ‘ccsm_utils/Tools/component_gen_comp -help’ for more details

51Friday, March 14, 14

