BRACE | Climatic Change Special Issue

A special issue of Climatic Change, edited by Brian O'Neill and Andrew Gettelman from NCAR, has been published and features papers and results from the Benefits of Reduced Anthropogenic Climate changE (BRACE) project. View linked articles in the table of contents below, or read more about the background and rationale for BRACE

Table of Contents

  1. O'Neill, B.C., Gettelman, A. Introduction to the special issue. Climatic Change, in preparation.
  2. O'Neill, B.C., Done, J.M., Gettelman, A., Lawrence, P., Lehner, F., Lamarque, J-F., Lin, L., Monaghan, A.J., Oleson, K., Ren, X., Sanderson, B.M., Tebaldi, C., Weitzel, M., Xu, Y., Anderson, B., Fix, M.J., Levis, S., 2017. The Benefits of Reduced Anthropogenic Climate changE (BRACE): A synthesis. Climatic Change 1-15. DOI: 10.1007/s10584-017-2009-x.

Methodological Issues

  1. Sanderson, B.M., Oleson, K.W., Strand, W.G., Lehner, F., O’Neill, B.C., 2015. A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change 1–16. DOI:10.1007/s10584-015-1567-z.
  2. Alexeeff, S., Nychka, D., Sain, S.R., Tebaldi, C., 2016. Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate experiments. Climatic Change 1-15. DOI: 10.1007/s10584-016-1809-8.
  3. Fix, M.J., Cooley, D., Sain, S.R., Tebaldi, C., 2016. A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling. Climatic Change 1–13. DOI:10.1007/s10584-016-1656-7.

Climate Extremes

  1. Tebaldi, C., Wehner, M.F., 2016. Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5. Climatic Change 1–13. DOI:10.1007/s10584-016-1605-5.
  2. Lehner, F., Deser, C., Sanderson, B.M., 2016. Future risk of record-breaking summer temperatures and its mitigation. Climatic Change 1–13. DOI:10.1007/s10584-016-1616-2.
  3. Oleson, K.W., Anderson, G.B., Jones, B., McGinnis, S.A., Sanderson, B., 2015. Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5. Cimatic Change 1-16. DOI:10.1007/s10584-015-1504-1.
  4. Xu, Y., Lamarque, J.-F., Sanderson, B.M., 2015. The importance of aerosol scenarios in projections of future heat extremes. Climatic Change 1–14. DOI:10.1007/s10584-015-1565-1.
  5. Lin, L., Gettelman, A., Fu, Q., Xu, Y., 2016. Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Climatic Change 1-16. DOI:10.1007/s10584-016-1615-3.


  1. Jones, B. et al. Population exposure to heat-related extremes: Demographic change vs climate change. Climatic Change, submitted.
  2. Anderson, G.B., Oleson, K.W., Jones, B., Peng, R.D., 2016. Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves. Climatic Change. DOI: 10.1007/s10584-016-1776-0.
  3. Anderson, G.B., Oleson, K.W., Jones, B., Peng, R.D., 2016. Projected trends in high-mortality heatwaves under different scenarios of climate, population, and adaptation in 82 US communities. Climatic Change. DOI: 10.1007/s10584-016-1779-x. 
  4. Marsha, A., Sain, S. R., Heaton, M. J., Monaghan, A. J., Wilhelmi, O. V., 2016. Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA. Climatic Change. DOI: 10.1007/s10584-016-1775-1.
  5. Monaghan, A.J., Sampson, K.M., Steinhoff, D.F., Ernst, K.C., Ebi, K.L., Jones, B., Hayden, M.H., 2016. The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti. Climatic Change 1-14. DOI:10.1007/s10584-016-1679-0.

Agriculture and Land Use

  1. Levis, S., Badger, A., Drewniak, B., Nevison, C., Ren, X., 2016. CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change 1–15. DOI:10.1007/s10584-016-1654-9.
  2. Ren, X., Weitzel, M., O’Neill, B.C., Lawrence, P., Meiyappan, P., Levis, S., Balistreri, E.J., and Dalton M., 2016. Avoided economic impacts of climate change on agriculture: Integrating a land surface model (CLM) with a global economic model (iPETS). Climatic Change. 1-15. DOI: 10.1007/s10584-016-1791-1. 
  3. Tebaldi, C., Lobell, D., 2015. Estimated impacts of emission reductions on wheat and maize crops. Climatic Change 1–13. DOI:10.1007/s10584-015-1537-5.

Tropical Cyclones

  1. Bacmeister, J., Reed, K.A., Hannay, C., Lawrence, P., Bates, S., Truesdale, J.E., Rosenbloom, N., Levy, M., 2016. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change. DOI: 10.1007/s10584-016-1750-x.
  2. Done, J.M., PaiMazumder, D., Towler, E., Kishtawal, C.M., 2015. Estimating impacts of North Atlantic tropical cyclones using an index of damage potential. Climatic Change 1–13. DOI:10.1007/s10584-015-1513-0.
  3. Gettelman A., Bresch D.N., Chen C.C., Truesdale J.E., Bacmeister J.T., 2017. Projections of future tropical cyclone damage with a high-resolution global climate model. Climatic Change. DOI: 10.1007/s10584-017-1902-7.

BRACE Studies Submitted to Other Journals

  1. Hu, A., Bates, S. Avoided Sea Level Rise from thermal expansion for RCP4.5 versus RCP8.5. In preparation.
  2. Towler, E., H. Lazrus, and D. Pai Mazumder, 2017: Characterizing drought risks and implications for water management under climate change. NCAR Technical Note NCAR/TN-533+STR, 25 pp, doi:10.5065/D6HD7T3N.